亚洲免费www97爱|草草aⅴ在线观看视频|伊伊综合网在线视频免费|在线日本道二区免费v

    您的位置:首頁>大學(xué)生活>

    教育資訊:新教材高一數(shù)學(xué)知識(shí)點(diǎn)整理 怎么學(xué)好數(shù)學(xué)

    說到高一數(shù)學(xué),很多同學(xué)都會(huì)說很難,的確,相對(duì)而言,高一數(shù)學(xué)是高中數(shù)學(xué)中最難的一部分,但我們一定要把知識(shí)點(diǎn)給吃透.下面就是小編給大家?guī)淼母咭粩?shù)學(xué)知識(shí)點(diǎn),希翼能幫助到大家!

    新教材高一數(shù)學(xué)知識(shí)點(diǎn)整理

    高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

    1.函數(shù)的奇偶性

    (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

    (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

    (3)推斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

    (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再推斷其奇偶性;

    (5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

    2.復(fù)合函數(shù)的有關(guān)問題

    (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

    (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

    3.函數(shù)圖像(或方程曲線的對(duì)稱性)

    (1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上;

    (2)證明圖像C1與C2的對(duì)稱性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在C2上,反之亦然;

    (3)曲線C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

    (4)曲線C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線C2方程為:f(2a-x,2b-y)=0;

    (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對(duì)稱,高中數(shù)學(xué);

    (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對(duì)稱;

    集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學(xué)元素。

    例如:

    1、分散的人或事物聚集到一起;使聚集:緊急~。

    2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

    3、口號(hào)等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G.F.P.,1845年1918年,德國數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

    集合,在數(shù)學(xué)上是一個(gè)基礎(chǔ)概念。什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。

    集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對(duì)象匯集在一起,使之成為一個(gè)整體(或稱為單體),這一整體就是集合。組成一集合的那些對(duì)象稱為這一集合的元素(或簡稱為元)。

    集合與集合之間的關(guān)系

    某些指定的對(duì)象集在一起就成為一個(gè)集合集合符號(hào),含有有限個(gè)元素叫有限集,含有無限個(gè)元素叫無限集,空集是不含任何元素的集,記做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。

    (說明一下:如果集合A的所有元素同時(shí)都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學(xué)教材課本里將符號(hào)下加了一個(gè)符號(hào),不要混淆,考試時(shí)還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)

    冪函數(shù)定義:

    形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

    定義域和值域:

    當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則惟獨(dú)同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而惟獨(dú)a為正數(shù),0才進(jìn)入函數(shù)的值域

    冪函數(shù)性質(zhì):

    對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

    首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

    排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

    排除了為0這種可能,即對(duì)于x

    排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

    總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

    如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

    如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。

    在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

    在x小于0時(shí),則惟獨(dú)同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

    而惟獨(dú)a為正數(shù),0才進(jìn)入函數(shù)的值域。

    由于x大于0是對(duì)a的任意取值都故意義的,因此下面給出冪函數(shù)在第一象限的各自情況.

    可以看到:

    (1)所有的圖形都通過(1,1)這點(diǎn)。

    (2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。

    (3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。

    (4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。

    (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。

    (6)顯然冪函數(shù)無界。

    1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

    (1)棱柱:

    定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

    分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

    表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

    幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

    (2)棱錐

    定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

    分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

    表示:用各頂點(diǎn)字母,如五棱錐

    幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

    (3)棱臺(tái):

    定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

    分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

    表示:用各頂點(diǎn)字母,如五棱臺(tái)

    幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

    (4)圓柱:

    定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

    幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

    (5)圓錐:

    定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

    幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

    (6)圓臺(tái):

    定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

    幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

    (7)球體:

    定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

    幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

    2、空間幾何體的三視圖

    定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、鳥瞰圖(從上向下)

    注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

    鳥瞰圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

    側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

    3、空間幾何體的直觀圖——斜二測畫法

    斜二測畫法特點(diǎn):

    ①原來與x軸平行的線段仍然與x平行且長度不變;

    ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

    圓的方程定義:

    圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2中,有三個(gè)參數(shù)a、b、r,即圓心坐標(biāo)為(a,b),只要求出a、b、r,這時(shí)圓的方程就被確定,因此確定圓方程,須三個(gè)獨(dú)立條件,其中圓心坐標(biāo)是圓的定位條件,半徑是圓的定形條件。

    直線和圓的位置關(guān)系:

    1.直線和圓位置關(guān)系的判定方法一是方程的觀點(diǎn),即把圓的方程和直線的方程聯(lián)立成方程組,利用判別式Δ來討論位置關(guān)系.

    ①Δ>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.

    方法二是幾何的觀點(diǎn),即把圓心到直線的距離d和半徑R的大小加以比較.

    ①dR,直線和圓相離.

    2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點(diǎn)兩種情況,而已知直線上一點(diǎn)又可分為已知圓上一點(diǎn)和圓外一點(diǎn)兩種情況.

    3.直線和圓相交,這類問題主要是求弦長以及弦的中點(diǎn)問題.

    切線的性質(zhì)

    ⑴圓心到切線的距離等于圓的半徑;

    ⑵過切點(diǎn)的半徑垂直于切線;

    ⑶經(jīng)過圓心,與切線垂直的直線必經(jīng)過切點(diǎn);

    ⑷經(jīng)過切點(diǎn),與切線垂直的直線必經(jīng)過圓心;

    當(dāng)一條直線滿足

    (1)過圓心;

    (2)過切點(diǎn);

    (3)垂直于切線三個(gè)性質(zhì)中的兩個(gè)時(shí),第三個(gè)性質(zhì)也滿足.

    切線的判定定理

    經(jīng)過半徑的外端點(diǎn)并且垂直于這條半徑的直線是圓的切線.

    切線長定理

    從圓外一點(diǎn)作圓的兩條切線,兩切線長相等,圓心與這一點(diǎn)的連線平分兩條切線的夾角.

    高一數(shù)學(xué)怎么學(xué)

    要學(xué)會(huì)科學(xué)地分配學(xué)習(xí)時(shí)間、制定學(xué)習(xí)計(jì)劃

    學(xué)好高中數(shù)學(xué)一定要分配好學(xué)習(xí)時(shí)間,制定計(jì)劃去學(xué)習(xí),也會(huì)反復(fù)講解本節(jié)課當(dāng)中的重難點(diǎn)知識(shí),此時(shí),一定要積極跟著老師的思維走,不能想別的東西分散注意力,課堂上,老師所講的概念都是十分重要,下課一定要做好復(fù)習(xí)。

    高一的同學(xué)一定要注意學(xué)習(xí)當(dāng)中,一定要注重基礎(chǔ),數(shù)學(xué)是最重視基礎(chǔ)知識(shí)的,由易到難,循序漸進(jìn),而且呢,學(xué)習(xí)當(dāng)中,也不能只顧刷題,卻不管算理。學(xué)習(xí)數(shù)學(xué),要注意提升自己的深度和廣度。還要及時(shí)地查漏補(bǔ)缺才行。

    注重總結(jié),掌握學(xué)習(xí)規(guī)律

    對(duì)于學(xué)過的內(nèi)容,要不斷的總結(jié)分析,這樣才干不斷的提高。高一學(xué)生學(xué)習(xí)數(shù)學(xué)的時(shí)候,沒學(xué)過一章節(jié)的知識(shí)就要對(duì)這個(gè)章節(jié)進(jìn)行總結(jié)和分析,整理一下基礎(chǔ)知識(shí)和重點(diǎn)內(nèi)容,分析一下自己有哪部分知識(shí)沒有完成掌握,通過總結(jié)來發(fā)現(xiàn)并解決學(xué)習(xí)中的問題。

    來源:高三網(wǎng)

    能發(fā)現(xiàn)自己知識(shí)上的薄弱環(huán)節(jié),在上課前補(bǔ)上這部分的知識(shí),不使它成為聽課時(shí)的“絆腳石”。這樣,就會(huì)順利理解新知識(shí),相信通過新教材高一數(shù)學(xué)知識(shí)點(diǎn)整理 怎么學(xué)好數(shù)學(xué)這篇文章能幫到你,在和好朋友分享的時(shí)候,也歡迎感興趣小伙伴們一起來探討。

    免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請(qǐng)聯(lián)系刪除!